Bayesian quantile regression
نویسندگان
چکیده
1. Introduction: Recent work by Schennach(2005) has opened the way to a Bayesian treatment of quantile regression. Her method, called Bayesian exponentially tilted empirical likelihood (BETEL), provides a likelihood for data y subject only to a set of m moment conditions of the form Eg(y, θ) = 0 where θ is a k dimensional parameter of interest and k may be smaller, equal to or larger than m. The method may be thought of as construction of a likelihood supported on the n data points that is minimally informative, in the sense of maximum entropy, subject to the moment conditions. Specifically the probabilities {p i } attached to the n data points are chosen to solve
منابع مشابه
Bayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملPower Prior Elicitation in Bayesian Quantile Regression
We address a quantile dependent prior for Bayesian quantile regression. We extend the idea of the power prior distribution in Bayesian quantile regression by employing the likelihood function that is based on a location-scale mixture representation of the asymmetric Laplace distribution. The propriety of the power prior is one of the critical issues in Bayesian analysis. Thus, we discuss the pr...
متن کاملA Bayesian Quantile Regression Analysis of Potential Risk Factors for Violent Crimes in USA
Bayesian quantile regression has drawn more attention in widespread applications recently. Yu and Moyeed (2001) proposed an asymmetric Laplace distribution to provide likelihood based mechanism for Bayesian inference of quantile regression models. In this work, the primary objective is to evaluate the performance of Bayesian quantile regression compared with simple regression and quantile regre...
متن کاملBayesian Spatial Quantile Regression
Statistical Science) Bayesian Spatial Quantile Regression by Kristian Lum Department of Statistical Science Duke University
متن کاملSemi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses
Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...
متن کامل